翻訳と辞書
Words near each other
・ Chemik Polski
・ Chemikal Underground
・ Chemiker Zeitung
・ Chemilla
・ Chemical King
・ Chemical lace
・ Chemical laser
・ Chemical law
・ Chemical leasing
・ Chemical library
・ Chemical ligation
・ Chemical looping combustion
・ Chemical Markup Language
・ Chemical messenger
・ Chemical Metallurgy
Chemical milling
・ Chemical mimicry
・ Chemical modification
・ Chemical Monitoring and Management
・ Chemical mortar battalion
・ Chemical nomenclature
・ Chemical oceanography
・ Chemical oxidation
・ Chemical oxygen demand
・ Chemical oxygen generator
・ Chemical oxygen iodine laser
・ Chemical patent
・ Chemical peel
・ Chemical People
・ Chemical phosphorus removal


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chemical milling : ウィキペディア英語版
Chemical milling

Chemical milling or industrial etching is the subtractive manufacturing process of using baths of temperature-regulated etching chemicals to remove material to create an object with the desired shape. It is mostly used on metals, though other materials are increasingly important. It was developed from armor-decorating and printing etching processes developed during the Renaissance as alternatives to engraving on metal. The process essentially involves bathing the cutting areas in a corrosive chemical known as an etchant, which reacts with the material in the area to be cut and causes the solid material to be dissolved; inert substances known as maskants are used to etch specific areas of the material.〔
==History==

Organic chemicals such as lactic acid and citric acid have been used to etch metals and create products as early as 400 BCE, when vinegar was used to corrode lead and create the pigment ceruse, also known as white lead. Most modern chemical milling methods involve alkaline etchants; these may have been used as early as the first century CE.
Armor etching, using strong mineral acids, was not developed until the fifteenth century. Etchants mixed from salt, charcoal, and vinegar were applied to plate armor that had been painted with a maskant of linseed-oil paint. The etchant would bite into the unprotected areas, causing the painted areas to be raised into relief. Etching in this manner allowed armor to be decorated as if with precise engraving, but without the existence of raised burrs; it also prevented the necessity of the armor being softer than an engraving tool. Late in the seventeenth century, etching became used to produce the graduations on measuring instruments; the thinness of lines that etching could produce allowed for the production of more precise and accurate instruments than were possible before. Not long after, it became used to etch trajectory information plates for cannon and artillery operators; paper would rarely survive the rigors of combat, but an etched plate could be quite durable. Often such information (normally ranging marks) was etched onto equipment such as stiletto daggers or shovels.
In 1782, the discovery was made by John Senebier that certain resins lost their solubility to turpentine when exposed to light; that is, they hardened. This allowed the development of photochemical milling, where a liquid maskant is applied to the entire surface of a material, and the outline of the area to be masked created by exposing it to UV light. Photo-chemical milling was extensively used in the development of photography methods, allowing light to create impressions on metal plates.
One of the earliest uses of chemical etching to mill commercial parts was in 1927, when the Swedish company Aktiebolaget Separator patented a method of producing edge filters by chemically milling the gaps in the filters. Later, around the 1940s, it became widely used to machine thin samples of very hard metal; photo-etching from both sides was used to cut sheet metal, foil, and shim stock to create shims, recording heat frets, and other components.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chemical milling」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.